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Homogeneous Fokker–Planck–Landau equation denoted by FPLE is studied for
Coulombian and isotropic distribution function, i.e. when the distribution function
depends only on time and on the modulus of the velocity. We derive a new conserva-
tive and entropy decaying semi-discretized FPLE for which we prove the existence
of global in time, positive. For the time-discretized equation, we give upper bound
for the time step which guarantes positivity and entropy decay of the numerical solu-
tion. c© 1998 Academic Press
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1. INTRODUCTION

The FPLE is commonly used in plasma physics when studying kinetical effects between
charged particles under Coulomb interaction. The homogeneous isotropic FPLE descibes
thermalization processes of the plasma in isotropic situations for the velocity variable and
independent of the space variable. Another interest of the FPLE is to produce precise
solutions in order to study numerical schemes in the 3D velocity space [4, 5, 8, 16–18] or
in the 2D axisymmetric case [15]. Indeed, no explicit solutions are known for the Coulomb
potential caseγ = −3, defined in Section 2, contrary to the Maxwellian caseγ = 0 [13].
There are also applications in the astrophysics field, where the FPLE is used for star cluster
modelling [6, 7].

Existence results for the continuous FPLE can be found in [9, 10, 1]. These results can
certainly be extended for the isotropic equation considered here.
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A conservative and entropy scheme for the (spherical and homogeneous) FPLE was first
proposed by Berezin, Khudick, and Pekker [2]. They give an upper bound for the time
step to ensure the decay of entropy without a complete proof of their assertion. Entropy
decay is physically relevant and seems to prevent oscillations (as shown in the sequel on
numerical examples and proved for the linear case in [4]). At the continuous level and for
obvious physical reason, the solution remains positive at any time. Thus, the discretization
must preserve this property and this does not appear clearly in [2]. See [4] for an example
of a conservative discretization which does not preserve positivity for all positive initial
data. In this work, we prove the positivity of the solution for the semi-discretized and
time-discretized solution for arbitrarily large time.

The aim of this paper is to propose a new conservative and entropy decaying scheme
for FPLE for which, first, we prove the existence of a unique and global in time solution
for the semi-discretized problem and, second, for the time-discretized equation we exhibit
an upper bound on the time step to ensure the positivity and the decay of the entropy.
Moreover, we show that the cost of the numerical evaluation of this operator is proportional
to the number of discretization points despite its quadratic structure. Let us also mention that
this scheme can be considered on an arbitrary mesh, contrary to the discretization considered
in [4, 5, 14]. This last property permits us to refine the mesh size for small velocity and, thus,
to obtain more accurate solutions. However, some questions remain open like the long-time
behaviour of the semi-discretized or time-discretized solution, although it is expected that
the distribution function converges to the discretized Maxwellian.

2. THE HOMOGENEOUS AND ISOTROPIC FPLE

We denote byF(v, t) the distribution function solution of the scaled integro-differential
equation

∂F

∂t
= Q(F, F) = ∇v.

( ∫
R3

8(v − v∗)
(
(∇v F)F∗ − (

∇v∗ F
)
F

)
dv∗

)
, (2.1)

where Q(F, F) is the Fokker–Planck collision operator written in the so called Landau
form with the standard notations (for exampleF∗ = F(v∗, t)) and8(v) is the following
3× 3 matrix:

8(v) = |v|γ+2S(v), S(v) = I3 − v ⊗ v
|v|2 . (2.2)

S(v) is the orthogonal projector onto the plane orthogonal tov. γ is a real parameter which
leads to the usual classification in hard potentials(γ > 0), maxwellian molecules(γ = 0)

or soft potentials(γ < 0). This latter case involves the Coulomb case (i.e.,γ = −3) which
is of primary importance for plasma applications. The well-known physical properties of
(2.1) are similar to that of the Boltzmann operator such as the decay of the entropy, the
conservation of mass, momentum, and energy, and the characterization of the equilibrium
states by Maxwellians. We refer to [8, 16] for a detailed presentation of this equation.

It can be easily check that isotropic initial data leads to an isotropic solution for the
classical nonlinear FPLE. In other words, if the distribution functionF(v, t) depends only of
the modulus of the velocityv = ‖v‖ at timet = 0, then this holds for any arbitrary timet ; i.e.,
there exists a functionf such thatF(v, t) = f (v, t) (see [2, 17, 18]). In the Coulomb case,
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such isotropic distribution functionf (ε, t), whereε = v2 is the energy variable, satisfies a
dimensionless equation of the form:

∂ f

∂t
= 1√

ε

∂

∂ε

∫ ∞

0
f (ε) f (ε′)

(
∂

∂ε
ln f (ε) − ∂

∂ε
ln f (ε′)

)
k(ε, ε′) dε′. (2.3)

For numerical simulations, we reduce the integration domain in FPLE to a bounded domain
in the variableε as in [2] :

∂ f

∂t
= 1√

ε

∂

∂ε

∫ ε0

0
f (ε) f (ε′)

(
∂

∂ε
ln f (ε) − ∂

∂ε
ln f (ε′)

)
k(ε, ε′) dε′, (2.4)

wherek(ε, ε′) = inf(ε3/2, (ε′)3/2) andε0 is choosen such that the distribution function is
near zero outside the ball of radiusε0. Physically,ε0 is choosen larger than the typical
scaled energy. We refer to [2] for a physical justification of this scaling. This operator
can be equivalently written in the following weak form: for any sufficiently smooth and
decaying test functionφ(ε),∫ ε0

0

∂ f

∂t
φ
√

ε dε = −1

2

∫ ε0

0

∫ ε0

0
f (ε) f (ε′)

(
∂φ(ε)

∂ε
− ∂φ(ε′)

∂ε

)
×

(
∂ ln f (ε)

∂ε
− ∂ ln f (ε′)

∂ε

)
k(ε, ε′) dε′ dε. (2.5)

This operator satisfies the conservation of mass (resp. energy) by choosingφ = 1 (resp.
φ = ε in (2.5))

ρ =
∫ ε0

0
f (ε)

√
ε dε, (2.6)

ρE =
∫ ε0

0
f (ε)ε3/2 dε. (2.7)

The entropy defined by

H =
∫ ε0

0
f (ε) ln( f (ε))

√
ε dε (2.8)

decays with time (by lettingφ = ln( f ) in the weak formulation of FPLE) and satisfies the
classical H theorem

∂ t H = 0 ⇔ f = exp(−Aε + B).

3. THE SEMI-DISCRETIZED FPLE

Let us introduce the discretizationfi = f (εi ), where (εi )i =1···N is an increasing se-
quence such thatε1 = 0, εN = ε0, and(1εi = (εi +1 − εi ))i =1···N−1, is also increasing. The
ε-derivative are approximated according to the simplest choice of finite difference operator
namely, we define for any discretized function(φi )i =1···N

Dφi = (φi +1 − φi )

1εi
, i = 1 · · · N − 1.
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Let us introduce some notations. We defineεi +1/2 = (εi +1 + εi )/2 andvi +1/2 as the mean
value of the velocity on [εi , εi +1], i.e.

vi +1/2 = 1

1εi

∫ εi +1

εi

√
ε dε = 2

31εi

(
ε

3/2
i +1 − ε

3/2
i

)
.

Let us consider first the discretization of the expression
∫ ε0

0 φ
√

ε dε for any functionφ. By
writing

∫ ε0

0
φ
√

ε dε =
N−1∑
i =1

∫ εi +1

εi

φ
√

ε dε

and using the trapezoidal quadrature formula with respect to the measure
√

ε dε, we ap-
proximate it by

N−1∑
i =1

1

2
(φi + φi +1)vi +1/21εi .

By factorizing the termsφi in the above expression, we obtain

1

2
φ1v3/21ε1 + 1

2

N−1∑
i =2

φi (vi +1/21εi +vi −1/21εi −1)+ 1

2
φNvN−1/21εN

def=
N∑

i =1

ci φi , (3.1)

whereci are such thatc1 = v3/21ε1/2= 1
3ε

3/2
2 ,

ci = 1

2
(vi +1/21εi + vi −1/21εi −1) = 1

3

(
ε

3/2
i +1 − ε

3/2
i −1

)
,

for i = 2 · · · N − 1 andcN = vN−1/21εN−1/2= 1
3(ε

3/2
N − ε

3/2
N−1). Once applied to the left-

hand side of (2.5) with(∂ f/∂t)φ, we obtain the discretization of
∫ ε0

0 (∂ f/∂t)φ
√

ε dε as∑N
i =1 ci (∂ fi /∂t)φi . We now turn to the discretization of the right-hand side of (2.5),

(r.h.s.) = −1

2

N−1∑
i =1

N−1∑
j =1

∫ εi +1

εi

∫ ε j +1

ε j

f (ε) f (ε′)
(

∂

∂ε
φ(ε) − ∂

∂ε
φ(ε′)

)

×
(

∂

∂ε
ln f (ε) − ∂

∂ε
ln f (ε′)

)
k(ε, ε′) dε′ dε. (3.2)

Using for each integrals of (3.2) a midpoint quadrature formula, we approximate (3.2) by

−1

2

N−1∑
i =1

N−1∑
j =1

gi gj ki, j 1εi 1εj (Dφi − Dφ j )(D(ln f )i − D(ln f ) j ) (3.3)

with

ki, j = k
(
ε

3/2
i +1/2, ε

3/2
j +1/2

)
,

and the termsgi stand for a second-order approximation of the distribution function at the
center of the interval [εi , εi +1]. In the paper of Berezinet al. [2], the termsgi are taken
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as an arithmetic mean offi and fi +1. This yields a discrete model for which it cannot be
proved that the distribution function remains positive as it must be. We take a second-order
approximation as the harmonic mean; that is,

gi
def= 2

1/ fi + 1/ fi +1
= 2 fi fi +1

fi + fi +1
. (3.4)

Such an approximation has been already used by the authors (see [4]) for the linear and
3D nonlinear cases of the Fokker–Planck–Landau equation and the resulting discretized
models for which the existence of a global positive solution is proved. Note that Dφi is also
a second-order approximation of the derivative in the center of the cell [εi , εi +1]. We shall
denote byDi, j the terms(D(ln f )i − D(ln f ) j ) for simplifying the notations. Hence, the
weak formulation of the semi-discretized model reads

N∑
i =1

ci
∂ fi
∂t

φi = −1

2

N−1∑
i =1

N−1∑
j =1

gi gj ki, j 1εi 1ε j (Dφi − Dφ j )Di, j . (3.5)

By factorizing the termsφi in the right-hand side of (3.5), we get

(r.h.s.) =
N−1∑
i =2

φi (pi − pi −1) + φ1 p1 − φN pN−1

for all i = 1 · · · N − 1:

pi
def=

N−1∑
j =1

gi gj ki, j Di, j 1ε j . (3.6)

Finally, by identifying the terms involvingφi in (3.5), we obtain the system of ordinary
differential equations (which is of the same form as in the 3D case presented in [4, 5]),

∂ fi
∂t

= FPs
i , i = 1 · · · N, (3.7)

with FPs
1 = p1/c1, FPs

i = (pi − pi −1)/ci for i = 2 · · · N − 1, and FPsN = −pN−1/cN−1. The
conservation laws imply that the discretized analogous of mass (2.6) and energy (2.7)
defined as

ρ =
N∑

j =1

cj f j (mass), ρE =
N∑

j =1

cj f j ε j (energy),

are conserved through the evolution of the system. These conservation properties can be
easily checked by takingφi = 1 andφi = εi in (3.5). Moreover, the entropy decays using
the discretized definition of the entropy (in the spherical case)

H = H( fi )
def=

N∑
j =1

cj f j ln( f j ). (3.8)

The verification is straightforward using the weak discretized formulation (3.5) with test
function φi = ln( fi ). Note that in the present case, the conservations and entropy decay
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hold whatever the discretization grid is uniform or not, which is not the case in the 3D case
[4, 5].

The existence of a positive global in time solution for this system follows exactly the
same line as the one of the full 3D system [4].

THEOREM 3.1. The Cauchy problem for the differential equation(3.7) with a strictly
positive initial data admits a unique, positive and entropy solution for any time.

Proof. The existence and unicity of the solution for small time is obtained using classical
Cauchy Lipschitz theorem. Indeed, there is no singularity in this system in the logarithmic
terms, usingf 0

i > 0. Thus, the existence of a solution global in time holds, provided that
the solution cannot vanish in finite time at some points. We follow exactly the same lines
as for the full 3D system [4]. Using mass conservation, showing that thefi ’s cannot vanish
in finite time is equivalent to checking that the function

K = N−1
sup
i =1

(∣∣∣∣ fi
fi +1

∣∣∣∣, ∣∣∣∣ fi +1

fi

∣∣∣∣) (3.9)

remains bounded in finite time. This function is convenient since these ratios actually appear
in the D(ln f )i terms. We have the following estimates (which are no more true with the
arithmetic average instead of (3.4)):

0 ≤ gi ≤ 2 fi +1 or 2 fi ∀i = 1 · · · N − 1. (3.10)

Using (3.9) and the mass conservation, we have the estimate for the termspi ,

|pi | ≤ Cgi ln(K ), (3.11)

whereC is a generic constant throughout the rest of the proof, depending on the number of
grid pointsN, domain sizeε0, the gridεi , and the initial data( f 0

i )i ∈I . Indeed, we have the
following upper bounds:

|Di, j | ≤ 2 sup
i =1···N−1

|D(ln f )i | ≤ 2 ln(K ), i = 1 · · · N − 1,

N−1∑
j =1

gj ki, j 1εj ≤
N−1∑
j =1

gj ε
3/2
j 1εj ≤ 2

N−1∑
j =1

gj ε j +1cj ≤ 4
N−1∑
j =1

f j +1ε j +1cj +1 ≤ 4ρE.

Note that the inequality

ε
3/2
j 1εj ≤ 2ε j +1cj , (3.12)

has been used which is equivalent to

3ε
3/2
j (ε j +1 − εj )

ε j +1
(
ε

3/2
j +1 − ε

3/2
j

) ≤ 3 sup
x∈[0,1[

x3/2(1 − x)

1 − x3/2
= 2.

Then, using (3.10), we have ∣∣∣∣ pi − pi −1

ci

∣∣∣∣ ≤ C ln(K ) fi . (3.13)
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Thus, we have for anyi = 1 · · · N − 1

∂( fi / fi +1)

∂t
= 1

fi +1

∂ fi
∂t

− fi
f 2
i +1

∂ fi +1

∂t
.

Finally, using (3.13), we have ∣∣∣∣∂K

∂t

∣∣∣∣ ≤ C K ln(K ), (3.14)

which impliesK (t) ≤ K (0) exp(exp(Ct)) and this ends the proof.

Remark3.2. Taking an arithmetic mean forgi terms, that isgi = ( fi + fi +1)/2 (like in
the work of Berezinet al.; see [2]) leads to the functionK (see [4]) for an estimate of the
form ∣∣∣∣∂K

∂t

∣∣∣∣ ≤ C K2 ln(K ). (3.15)

Since this differential equation has no global solution in time, it cannot be proved that the
semi-discretization described in [2] has a global positive solution.

Remark3.3. An alternative proof can be given following the ideas presented in next
section (see Proposition 4.1). Indeed, we show that the discrete collision term can always
be written as

FPs
i = Gi + Ki fi ,

whereGi is positive (gain term) andKi is bounded by some constantC. So that for alli
we have

d fi
dt

≥ −C fi .

Such inequality implies that the weightsfi cannot vanish in finite time.

4. THE TIME-DISCRETIZED FPLE

In this section, the bars denote the various quantities (likefi ) at time tn+1 = tn + 1t
defined recursively. Let us introduce the following time explicit scheme

f̄ i = fi + 1tFPs
i , (4.1)

where FPsi is defined by (3.7), of the formpi − pi −1/ci for i = 2, . . . , N − 1, andpi can
be written in the form

pi = gi (D(ln f )i Ai − Bi ) ∀i = 1 · · · N − 1,

with

Ai =
N−1∑
j =1

gj ki, j 1ε j and Bi =
N−1∑
j =1

gj D(ln f ) j ki, j 1εj . (4.2)
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4.1. Cost and Implementation of the Algorithm

The particular form of the discrete functionki, j ,

ki, j =
{

ε
3/2
i +1/2 ∀i < j,

ε
3/2
j +1/2 ∀ j ≥ i,

permits us to evaluate all theN terms Ai and Bi in O(N) operations. Indeed, we have,
using the definition ofki, j ,

Ai = ε
3/2
i +1/2

∑
N−1≥ j >i

gj 1εj +
∑

1≤ j ≤i

gj ε
3/2
j +1/21εj (4.3)

and

Bi = ε
3/2
i +1/2

∑
N−1≥ j >i

gj D(ln f )1εj +
∑

1≤ j ≤i

gj D(ln f )ε
3/2
j +1/21εj . (4.4)

Obviously, Ai and Bi can be evaluated using three loops. The detailed algorithm for the
computation of all the termspi reads :

ALGORITHM 4.1.

α1 = g1 ∗ ε
3/2
1+1/2 ∗ 1ε1;

γ1 := g1 ∗ D(ln f )1 ∗ ε
3/2
1+1/2 ∗ 1ε1;

for i := 2 to N − 1 do
αi := αi −1 + gi ∗ ε

3/2
i +1/2 ∗ 1εi ;

γi := γi −1 + gi ∗ D(ln f )i ∗ ε
3/2
i +1/2 ∗ 1εi ∗;

end for

βN−1 := gN−1 ∗ 1εN−1;
δN−1 := gN−1 ∗ D(ln f )N−1 ∗ 1εN−1;
for i := N − 2 to 1do

βi := βi +1 + gi ∗ 1εi ;
δi := δi +1 + gi ∗ D(ln f )i ∗ 1εi ;

end for

for i := 1 to N − 1 do
Ai := ε

3/2
i +1/2 ∗ βi + αi ;

Bi := ε
3/2
i +1/2 ∗ δi + γi ;

pi := gi ∗ ((D ln f )i ∗ Ai + Bi );
end for

4.2. Time Step Restriction for Positivity and Entropy Decay

The main questions about the time explicit scheme (4.1) concern positivity and entropy
decay property. By positivity of the scheme, we mean that the termsf̄ i are positive if
the terms fi are positive and by entropy decay, the propertyH( f̄ i ) ≤ H( fi ), where the
discretized entropyH is defined by (3.8).

We obtain a time step limitation in order that the scheme remains positive and the entropy
decays. The last question is related to the series of time steps; its divergence provides a
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positive and entropy decaying time-discretized solution for any arbitrary large time. We per-
form the analysis for two natural grids which are used for the numerical examples presented
later.

The first one is auniform grid in velocity , where the nodes of the grid are defined by the
sequenceεi = (i − 1)21v2 with 1v = √

ε0/(N − 1), N being the number of grid points.
For this choice, the geometric quantities used in the definition of the scheme are

• 1εi = (1v)2(2i − 1).
• ci = (3(i − 1)2 + 1)1v3/3 except fori = N, wherecN = (3N2 − 9N + 7)1v3/3.
• εi +1/2 = (2i 2 − 2i + 1)1v2/2.

The second type is auniform grid in energy , i.e. εi = (i − 1)1ε with 1ε = ε0/(N − 1)

and the geometric quantities used reads now:

• 1εi = 1ε.
• ci = (i 3/2−(i −2)3/2)1ε3/2/3 except fori = 1 and fori = N for whichc1 = 1ε3/2 and

cN = ((N−1)3/2−(N−2)3/2)1ε3/2 respectively. It is easy to check that we have the follow-
ing lower bound forci which will be usefull later:ci ≥ 1ε3/2((i −1)+√

i (i − 1))/(3
√

N)

for i = 2 · · · N − 1, and fori = N, cN ≥ 1ε3/2(N − 3/2 + √
(N − 1)(N − 2))/(3

√
N).

• εi +1/2 = (2i − 1)1ε/2.

For these two grids, we obtain sufficient conditions for the time step in order to ensure
positivity and entropy decay. We summarize this result as

PROPOSITION4.1. For each grid considered above, there exists a constant C which
depends only on the densityρ, the entropy H, and the lengthε0, such that the scheme(4.1)

is positive and entropy decaying under a time step restriction of the form1t ≤ C1v2 for
theuniform grid in velocity or 1t ≤ C1ε2 for theuniform grid in energy .

Proof. Let us first exhibit a sufficient condition on the time step to guarantee entropy
decay. Suppose that there exists a time step1t0 such that for all1t ∈ [0, 1t0[ all the terms
f̄ j are positive. Then, using the definition (3.8), the entropy associated with the scheme
(4.1) is

H̄ = H(1t) =
N∑

j =1

cj f̄ j ln( f̄ j ) ≥
N∑

j =1

cj
(

f j + 1tFPs
j

)
ln

(
f j + 1tFPs

j

)
. (4.5)

Then, we have, using the inequality ln(1 + x) < x ∀x > −1 and the conservation of the
mass,

H(1t) ≤ H(0) + 1t
N∑

i =1

ci FPs
i ln( fi ) + 1t2

N∑
i =1

ci
(
FPs

i

)2/
fi

def= H̃(1t)

for all 1t ∈ [0, 1t0[. Thus, a sufficient condition for the entropy decay is to choose1t such
that H̃(1t) ≤ H̃(0) = H(0), or equivalently,

1t ≤ −∑N
i =1 ci FPs

i ln( fi )∑N
i =1 ci

(
FPs

i

)2/
fi

.
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By construction, we have

−
N∑

i =1

ci FPs
i ln( fi ) = 1

2

N−1∑
i =1

N−1∑
j =1

gi gj ki, j 1εi 1εj D
2
i, j ≥ 0.

On the other hand, we have

N∑
i =1

ci
(
FPs

i

)2/
fi ≤ p2

1

c1 f1
+ p2

N−1

fNcN−1
+

N−1∑
i =2

1

ci fi
(pi − pi −1)

2

≤ p2
1

c1 f1
+ p2

N−1

fNcN−1
+

N−1∑
i =2

2

ci fi

(
p2

i + p2
i −1

)
.

Using the definition of the termpi , we have

p2
i =

(
N−1∑
i =1

gi gj ki, j 1εj Di, j

)2

≤
(

N−1∑
i =1

gi gj ki, j 1εj

)(
N−1∑
i =1

gi gj ki, j 1εj D
2
i, j

)
,

and using thatgi ≤ 2 fi , we obtain

p2
i

fi ci
≤ 2

ci 1εi

(
N−1∑
i =1

gj ki, j 1εj

)(
N−1∑
i =1

gi gj ki, j 1εj 1εi D
2
i, j

)

≤ sup
i =1···N

(
2

ci 1εi

N−1∑
i =1

ki, j gj 1εj

)(
N−1∑
i =1

gi gj ki, j 1εj 1εi D
2
i, j

)
.

The same estimate can be obtained forpi −1/ fi ci , since the sequence1εi is increasing. By
summing these inequalities, one obtains

N∑
i =1

ci
(
FPs

i

)2/
fi ≤ sup

i =1···N

(
16

ci 1εi

N−1∑
j =1

ki, j gj 1εj

)(
−

N∑
i =1

ci FPs
i ln( fi )

)
.

Finally, the time step has to satisfy

1t.
N

sup
i =1

(
16

ci 1εi

N−1∑
j =1

ki, j gj 1εj

)
≤ 1. (4.6)

Equation (4.6) gives the time step limitation used for the numerical examples. We must now
find an upper bound of the denominator of (4.6). We detail the majoration for the uniform
grid in velocity, since for the uniform grid in energy it follows the same lines. The problem is
to estimate the above terms independently of i. For the uniform grid in the velocity variable,
using the expressions of1εi andci and sinceε3/2

i +1/2 ≥ ki, j , we have for the denominator of
(4.6)

Ai =
(

N−1∑
j =1

ki, j gj 1εj

)
≤ ε

3/2
i +1/2

(
N−1∑
j =1

gj 1εj

)
. (4.7)
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Using the definitions ofci , 1εi , andεi +1/2, one also has

ε
3/2
i +1/2

ci 1εi
= 3

2
√

2

(
(2i 2 − 2i + 1)3/2

(3(i − 1)2 + 1)(2i − 1)

)
1

1v2
.

Since the term depending oni is bounded, we have a time step of the form

1t ≤ C

(
N−1∑
j =1

gj 1εj

)
(1v)2,

whereC is a constant independent of the data. Let us now bound the term
∑N−1

j =1 gj 1εj .
By the Cauchy–Schwarz inequality, we have

N−1∑
j =1

gj 1εj ≤
√√√√N−1∑

j =1

g2
j cj

√√√√N−1∑
j =1

(
1ε2

j

/
cj

)
. (4.8)

By replacing1εj andcj by their values, it is easy to check that
√∑N−1

j =1 (1ε2
j /cj ) is bounded

by a constant which depends only on the length of the domainε0. On the other hand, one
defines the discreteL2 norm

1

2

√√√√N−1∑
j =1

g2
j cj ≤

√√√√ N∑
j =1

f 2
j cj

def= ‖ f ‖2.

Finally, the scheme is entropy decaying under a condition for the time step of the form

1t ≤ C(ε0, ‖ f ‖2)1v2.

For the uniform grid in energy, as indicated above, the majoration can be carried out using
the same techniques. This gives the inequalities

Ai =
(

N−1∑
j =1

ki, j gj 1εj

)
≤ εi +1/2

(
N−1∑
j =1

ε
1/2
i +1/2gj 1εj

)
, (4.9)

instead of (4.7). It is also necessary to use the lower bound onci . We obtain the same kind
of time step restriction for entropy decaying as for the uniform grid in velocity, but with
1ε2 instead of1v2.

Let us now exhibit a sufficient condition on the time step to guarantee the positivity of
the scheme (4.1). Using the notation defined above, we can write the terms FPs

i as a sum of
a positive termGi and a pseudo-loss term (which is not necessarily negative) of the form
Ki fi , with bounded coefficientsKi . Indeed, FPsi reads

1

ci

(
Ai gi

1εi
ln

(
fi +1

fi

)
+ Ai −1gi −1

1εi −1
ln

(
fi −1

fi

)
− gi Bi − gi −1Bi −1

)
,

whereAi andBi are defined by (4.3) and (4.2), respectively. First, it is easy to check that
all the termsBi are bounded; then, using (3.10),Bi gi /( fi ci ) are bounded and are taking
into account inKi . The same result holds forBi −1gi −1/( fi −1ci −1).
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Consider now the term containingAi . If fi +1 ≥ fi , this term is positive, then it is taken
into account in the gain termGi . On the contrary, sinceAi ≥ 0 andgi ≥ 0, this term is
negative and in such case, we have∣∣∣∣gi ln

(
fi +1

fi

)∣∣∣∣ ≤ 2 sup
1≥x≥0

|x ln(x)| fi = 2e−1 fi ≤ 2 fi ,∣∣∣∣ 1

ci fi 1εi
Ai gi ln

(
fi +1

fi

)∣∣∣∣ ≤ 2Ai

ci 1εi
.

This term taken into account inKi . It is straightforward to show the same result for

1

ci 1εi −1
Ai −1gi −1 ln

(
fi −1

fi

)
.

Therefore, we have

FPs
i = Gi + Ki fi

with Gi ≥ 0 andKi bounded. Then,̄f i = fi + FPs
i is positive provided that

1t ≤
(

max
i

|Ki |
)−1

,

and it is easy to check that

max
i

|Ki | ≤ 2

(
max

i

∣∣∣∣ Ai

ci 1εi

∣∣∣∣ + max
i

∣∣∣∣ Bi

ci

∣∣∣∣).

Then, under the condition

1t ≤ 1

2

(
max

i

∣∣∣∣ Ai

ci 1εi

∣∣∣∣ + max
i

∣∣∣∣ Bi

ci

∣∣∣∣)−1

, (4.10)

the scheme is positive. Let us now detail for the uniform grid inv such a time restriction.
Recall the inequality obtained from (4.7)

Ai

ci 1εi
≤ C(ε0, ‖ f ‖2)/(1v)2. (4.11)

For the terms|Bi /ci | we use∣∣∣∣ Bi

ci

∣∣∣∣εi +1/2

ci

N−1∑
j =1

ε
1/2
j +1/2 gj |(D ln f ) j |1εj ≤ C

1v

N−1∑
j =1

ε
1/2
j +1/2 gj |(D ln f ) j |1εj . (4.12)

Using (3.10) and the fact that the sequence1εj is increasing, we have

N−1∑
j =1

ε
1/2
j +1/2 gj |(D ln f ) j |1εj ≤

N−1∑
j =1

ε
1/2
j +1/2

1εj
gj (|ln f j | + |ln f j +1|)1εj

≤ 4
N−1∑
j =1

ε
1/2
j +1/2

1εj
f j |ln f j |1εj + 2 fN |ln( fN)|ε1/2

N−1/2

≤ C′

1v

N∑
j =1

f j |ln f j |1εj .
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Then, using the Cauchy–Schwarz inequality as for (4.8), we obtain

N−1∑
j =1

1εj f j |ln f ) j | ≤
√√√√N−1∑

j =1

f 2
j |ln f j |2cj

√√√√N−1∑
j =1

1ε2
j

cj
≤ C(ε0, ‖ f ln( f )‖2). (4.13)

Collecting all the results, we show that, in the case of an uniform grid inv, there exists a
constantC such that for any time step satisfying

1t ≤ C(ε0, ‖ f ln( f )‖2, ‖ f ‖2)1v2 (4.14)

the scheme is positive For the case of an uniform grid inε, we do not detail the calculations.
One uses an estimate of the form (4.7) instead of (4.11) to obtain an upper bound of
Ai /(ci 1εi ). For Bi /(ci ), one proceeds exactly as for the uniform grid in velocity. Finally,
we obtain (4.14) with1ε2 instead of1v2.

For each type of grid, by takingC = min(C1, C2), we obtain the desired result.

Remark4.2. On the numerical examples, maxi ( fi ) (and consequently theL2 norm
‖ f ‖2) appears to be bounded not only uniformly in time (for a fixedN), which can be
proved using the mass conservation, but also independently of the mesh size. This remains
to be proved in order to approach the problem of the convergence.

Remark4.3. As we will see in the next section on a numerical example, preserving the
positivity only, by taking a time step of the form1t = α1t0, where1t0 is the maximum
allowable time step satisfying

fi + 1t0FPs
i ≥ 0 ∀ i ∈ I

with the CFL factorα equal to 0.5, for example, does not permit to avoid oscillations.
However, (4.6) and (4.10) yield to a nonoscillatory scheme even if there is no maximum
principle for the nonlinear FPLE.

5. NUMERICAL TEST FOR THE FPLE

The numerical test presented now is extracted from the work of Rosenbluthet al. [19]
and has been used by Larrocheet al. [12] and Frenod and Lucquin [11] to test numerical
methods for the Fokker–Planck–Landau equation. The initial data is given by

f 0(ε) = 0.01 exp(−10[(
√

ε − 0.3)/0.3]2). (5.1)

We will show the entropy, the Linnick functionnal and the distribution function at time
t ∈ {9, 36, 81, 144, 225, 324, 441, 576, 729, 900}. The Linnick functionnal is defined by

L(t) =
∫

v∈R3

(∇v f )2

f
dv (5.2)

and for an isotropic function this reduces to

L(t) =
∫
ε≥0

(
∂ f

∂ε

)2
ε3/2

f
dε. (5.3)
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FIG. 1. Distribution function for the uniform grid in velocity.

The Linnick functionnal is known to be decreasing in time for the Boltzmann equation and
the linear Fokker–Planck equation [3, 20, 9, 10]. Since the nonlinear FPLE is the so-called
grazing collisions limit of the Boltzmann equation, one can expect that it is also decreasing
for FPLE. For initial data (5.1) the Linnick functionnal is actually time-decreasing. More-
over, this functionnal illustrates very well the instabilities due to a nonentropy decaying
scheme.

The tests run with two types of meshes, a uniform grid in the modulus of the velocity
v = √

ε and the other in the energy variableε already described in the preceeding section.
For the two type of grids we take either 200 or 800 points of discretization andε0 = 1.
The computations were carried out with a global time step equal to 1 and using subcycling
inside each time step in order to preserve the positivity of the solution and to respect the
entropy condition (4.6) with a CFL factor equal to 4.

The tests have been performed on a personnal Apple computer, with a 160 Mhz PPC 603
chip. The cost of evaluating the solution during a time step for the uniform grid in energy
(resp. in velocity) is about 0.09 s (resp. 0.05 s) for 200 cells and 7.46 s (resp. 3.71 s) for
800 cells; 900 time steps are performed. Note that the increase of the computationnal time
is in good agreement with the theoretical estimate, since it is around a cubic function of the
numberN of points (1t ≤ C/N2 and linear costO(N) of the algorithm).

Figures 1 and 2 show the time relaxation of the distribution function at various times:
initial condition, timet ∈ {9, 36, 81, 144, 225, 900}, and the equilibrium state. Figures 3
and 4 show for this thermalization experiment the time relaxation of theH and Linnick

FIG. 2. Distribution function for the uniform grid in energy.
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FIG. 3. Entropy.

functionnals. One can observe for these quantities that the results are very close to each
other.

We also run a simulation using 200 cells uniformly distributed in energy and by only
imposing the positivity of the solution using at each iteration half of the maximal allowable
time step that guarantees the positivity. The run is only three times faster than the ones made
with a CFL equal to 4 for the entropy condition 4.6.

Figures 5, 6, and 7 show the relaxation of the H and Linnick functionnals and the dis-
tribution function att = 81. For the entropy, Fig. 5 compares the result with the entropy
obtained for the same grid and the entropy-decaying scheme. The noisy curve corresponds
to the “nonentropy-decaying” computation. For the first time steps, the two curves are very
close. For large time, it is clear that the “nonentropy-decaying” computation has some dif-
ficulties reaching the equilibrium state, but the result does not seem too bad. On the Fig. 7
we plot the distribution function obtained with the two schemes att = 81. The results are
qualitatively the same for other times except for the small ones. The domain of oscillations

FIG. 4. Linnick functionnal.
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FIG. 5. Entropy: Comparison between entropy and nonentropy computations.

FIG. 6. Nonentropy computation: Linnick functionnal.

FIG. 7. Comparison between entropy and nonentropy computation for the distribution function att = 81.
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is independent of time and of the number of grid points. At large time, these oscillations
persist but are damped. The main difference can be seen on the Linnick functional for which
the results appear totally randomized, with no relationship to the ”exact” (entropy decaying
one) behaviour. Note that the same type of computation with a uniform grid in velocity pro-
duces a totally different behaviour. The distribution function is uniquely noisy nearv = 0
which explains, by recalling that the measure of integration is

√
ε dε, that functionnals of

the distribution function have a correct time relaxation.

6. CONCLUSIONS

We provide for the simplest case of the isotropic, homogeneous, and Coulomb Fokker–
Planck–Landau equation, a complete analysis of a conservative and entropy decaying
numerical scheme. This scheme is very close to the scheme proposed in [2] since the
modification consists in taking the harmonic average, instead of the arithmetic one for the
evaluation ofgi . The main advantage of this scheme is to provide rigorously for the first
time the existence of solutions for the semi-discretized model and time step restrictions to
ensure positivity and entropy decaying of the scheme. We show that relaxing these time
step conditions provides suspicious numerical results of FPLE for any time (see plots of
Linnick functional).

We refer to [4] for similar analysis for the linear and nonlinear FPLE given by (2.1).
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