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Homogeneous Fokker—Planck—Landau equation denoted by FPLE is studied for
Coulombian and isotropic distribution function, i.e. when the distribution function
depends only on time and on the modulus of the velocity. We derive a new conserva-
tive and entropy decaying semi-discretized FPLE for which we prove the existence
of global in time, positive. For the time-discretized equation, we give upper bound
for the time step which guarantes positivity and entropy decay of the numerical solu-
tion. (© 1998 Academic Press
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1. INTRODUCTION

The FPLE is commonly used in plasma physics when studying kinetical effects betw
charged particles under Coulomb interaction. The homogeneous isotropic FPLE des
thermalization processes of the plasma in isotropic situations for the velocity variable
independent of the space variable. Another interest of the FPLE is to produce pre
solutions in order to study numerical schemes in the 3D velocity space [4, 5, 8, 16-1¢
in the 2D axisymmetric case [15]. Indeed, no explicit solutions are known for the Coulo
potential caser = —3, defined in Section 2, contrary to the Maxwellian case 0 [13].
There are also applications in the astrophysics field, where the FPLE is used for star cl
modelling [6, 7].

Existence results for the continuous FPLE can be found in [9, 10, 1]. These results
certainly be extended for the isotropic equation considered here.
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A conservative and entropy scheme for the (spherical and homogeneous) FPLE wa
proposed by Berezin, Khudick, and Pekker [2]. They give an upper bound for the t
step to ensure the decay of entropy without a complete proof of their assertion. Ent
decay is physically relevant and seems to prevent oscillations (as shown in the sequ
numerical examples and proved for the linear case in [4]). At the continuous level anc
obvious physical reason, the solution remains positive at any time. Thus, the discretiz:
must preserve this property and this does not appear clearly in [2]. See [4] for an exal
of a conservative discretization which does not preserve positivity for all positive init
data. In this work, we prove the positivity of the solution for the semi-discretized a
time-discretized solution for arbitrarily large time.

The aim of this paper is to propose a hew conservative and entropy decaying sct
for FPLE for which, first, we prove the existence of a unique and global in time solut
for the semi-discretized problem and, second, for the time-discretized equation we ex
an upper bound on the time step to ensure the positivity and the decay of the entl
Moreover, we show that the cost of the numerical evaluation of this operator is proporti
to the number of discretization points despite its quadratic structure. Let us also mentior
this scheme can be considered on an arbitrary mesh, contrary to the discretization consi
in[4, 5, 14]. This last property permits us to refine the mesh size for small velocity and, tl
to obtain more accurate solutions. However, some questions remain open like the long
behaviour of the semi-discretized or time-discretized solution, although it is expected
the distribution function converges to the discretized Maxwellian.

2. THE HOMOGENEOUS AND ISOTROPIC FPLE

We denote by (v, t) the distribution function solution of the scaled integro-differentic
equation

i = Q(F» F) = VV(/ q)(V—V*)((VVF)F* - (VV*F)F) dV*>, (21)
JR3

ot
where Q(F, F) is the Fokker—Planck collision operator written in the so called Land
form with the standard notations (for exampte= F (v,, t)) and ®(v) is the following
3 x 3 matrix:

OWV) = V[**2S(v), SW) = I3 V;%. 2.2)

S(v) is the orthogonal projector onto the plane orthogonal tois a real parameter which
leads to the usual classification in hard potentigls- 0), maxwellian moleculegy = 0)
or soft potentialgy < 0). This latter case involves the Coulomb case (ies —3) which
is of primary importance for plasma applications. The well-known physical properties
(2.1) are similar to that of the Boltzmann operator such as the decay of the entropy
conservation of mass, momentum, and energy, and the characterization of the equilik
states by Maxwellians. We refer to [8, 16] for a detailed presentation of this equation.
It can be easily check that isotropic initial data leads to an isotropic solution for |
classical nonlinear FPLE. In other words, if the distribution functar, t) depends only of
the modulus of the velocity = ||v|| attimet = 0, then this holds for any arbitrary timig.e.,
there exists a functiori such that=(v,t) = f (v, t) (see [2, 17, 18]). In the Coulomb case
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such isotropic distribution functiofi (¢, t), wheres = v? is the energy variable, satisfies a
dimensionless equation of the form:

of 19 [~ d 0
— = fe)fE)| —Inf(e)— —Inf(e) )k, &)de. 2.3
ot ﬁSa/o (e) (8)(88 nfle)—o-In (8)) (e, &') de (2.3)
For numerical simulations, we reduce the integration domain in FPLE to a bounded dor
in the variables as in [2] :

of 1 9 [* 9 0 , o
Ezﬁg/o f(s)f(e)(glnf(s)—glnf(e))k(s,s)de, (2.4)

wherek(e, ¢/) =inf(e¥2, (¢)%?) and g is choosen such that the distribution function i
near zero outside the ball of radigs. Physically,eq is choosen larger than the typical
scaled energy. We refer to [2] for a physical justification of this scaling. This opera

can be equivalently written in the following weak form: for any sufficiently smooth ar
decaying test functiog (¢),

9 f 1 e e NELIONELICS
/oﬁ"’*/gdg‘_i/o /O f(e)f(s)( ) _ 38>

y <8In f(e) B aln f(g)
de de

> k(e, ') de’ de. (2.5)

This operator satisfies the conservation of mass (resp. energy) by chgosiagresp.
¢=¢in(2.5)

0= /080 f(e)y/2 de, (2.6)
pE = /080 f(e)e¥?de. (2.7)

The entropy defined by
H = /O f (&) In(f (e)) /2 de (2.8)

decays with time (by letting = In( ) in the weak formulation of FPLE) and satisfies the
classical H theorem

#H =0« f =exp—Ae + B).

3. THE SEMI-DISCRETIZED FPLE

Let us introduce the discretizatiof = f (¢;), where (¢j)i—1...n IS @n increasing se-
guence such that =0, ey = &g, and(Agj = (gj11 — €i))i=1..n—_1, IS @lSO increasing. The
e-derivative are approximated according to the simplest choice of finite difference oper
namely, we define for any discretized functi@)i—1..n

M, i=1...N—-1

D¢ =
i Ac
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Let us introduce some notations. We defing;» = (i1 + €)/2 andvj11/» as the mean
value of the velocity ond, ¢j 1], i.e.

1 [an 2 30 32
Ui+1/2=A—£i/ ﬁds:fsi(giil_gi/)'
&

Let us consider first the discretization of the expresﬁ?rzpﬁ de for any functiong. By
writing

€0 N-1 Ei+1
de = d
| ovea > / p/7 de

and using the trapezoidal quadrature formula with respect to the megsute, we ap-
proximate it by

|
Z— i + it vit12A8.
:12

By factorizing the termg; in the above expression, we obtain

N-1

1
—¢1U3/2A81+ Z¢|(U|+1/2A8|+v| 1/28¢i-1)+ 5 ¢NUN 124N —ZCI¢I7 (3.1)
i=2 i=1

wherec; are such that; = vgpAe1/2= 1632,

1 1
G = E(Ui+1/2A8i +vi_1pAgi_1) = 5(8.3421 — 8?121)

fori=2---N —1andcy =vn_1/2Aen-1/2= 3(53/2 — 8::1/21) Once applied to the left-
hand side of (2.5) with(d f/dt)¢, we obtain the discretization qﬁ"(af/at)(pﬁ de as

ZiN:l Gi (9 f; /0t)¢i . We now turn to the discretization of the right-hand side of (2.5),

N-1N-1

(rhs)—__zz/” / f(s)f(e)( ¢>(e>——¢>(e))
i=1 j=1"%
X <— In f(e) — 9 In f(s')) k(e, ') de’ de. 3.2
ae ae

Using for each integrals of (3.2) a midpoint quadrature formula, we approximate (3.2)

1 N—1N-1
5 Oi gjki,jASiASj (Do — D¢,-)(D(In )i —D(n f)]) (3.3)
i—1 j=1
with
kij = k(8i34/—21/2’ ?/+21/2)

and the termgj; stand for a second-order approximation of the distribution function at t
center of the intervald, ¢i;1]. In the paper of Bereziet al. [2], the termsg; are taken
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as an arithmetic mean df and f; ;. This yields a discrete model for which it cannot be
proved that the distribution function remains positive as it must be. We take a second-c
approximation as the harmonic mean; that is,

g def 2 _ 2fifin
"TYfi L/ fin i fiad

(3.4)

Such an approximation has been already used by the authors (see [4]) for the linea
3D nonlinear cases of the Fokker—Planck—Landau equation and the resulting discre
models for which the existence of a global positive solution is proved. Note thas@lso

a second-order approximation of the derivative in the center of thesgedt [ 1]. We shall
denote byD; ; the terms(D(In f); — D(In f);) for simplifying the notations. Hence, the
weak formulation of the semi-discretized model reads

N N—-1N-1

af; 1
o % =3 > digikijAsi Asj(Dgi — D))D; j. (3.5
i—1 i=1 j=1

By factorizing the termg; in the right-hand side of (3.5), we get

N-1
(rhs) =" "¢i(p — pi-1) + ¢1P1 — pnPr-1

i=2

foralli=1.---N—-1:

N-—-1
pi d=efzgi gjki.jDijAsj. (3.6)
=1

Finally, by identifying the terms involving; in (3.5), we obtain the system of ordinary
differential equations (which is of the same form as in the 3D case presented in [4, 5])

af;
a—t'zFPf i=1---N, (3.7)

with FP} = py/c1, FP, = (pi — pi—1)/ci fori=2---N—1,and FR = —pn_1/Cn-1. The
conservation laws imply that the discretized analogous of mass (2.6) and energy
defined as

N N
p=> cfj (mas3, pE=> cjfje; (energy,
j=1 j=1

are conserved through the evolution of the system. These conservation properties ¢
easily checked by taking; =1 and¢; =¢; in (3.5). Moreover, the entropy decays using
the discretized definition of the entropy (in the spherical case)

N
H :H(fi)dzefZCj f]' In(fJ) (38)
=1

The verification is straightforward using the weak discretized formulation (3.5) with t
function ¢; =In(f;). Note that in the present case, the conservations and entropy de
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hold whatever the discretization grid is uniform or not, which is not the case in the 3D c
[4, 5].

The existence of a positive global in time solution for this system follows exactly t
same line as the one of the full 3D system [4].

THEOREM 3.1. The Cauchy problem for the differential equati(87) with a strictly
positive initial data admits a unigu@ositive and entropy solution for any time.

Proof. The existence and unicity of the solution for small time is obtained using classi
Cauchy Lipschitz theorem. Indeed, there is no singularity in this system in the logarith
terms, usingf,? > 0. Thus, the existence of a solution global in time holds, provided tf
the solution cannot vanish in finite time at some points. We follow exactly the same li
as for the full 3D system [4]. Using mass conservation, showing thaf; theannot vanish
in finite time is equivalent to checking that the function

K — p(

i=1

fii1

’ fi

o

fii1

) (3.9)

remains bounded in finite time. This function is convenient since these ratios actually ap
in the D(In f); terms. We have the following estimates (which are no more true with t
arithmetic average instead of (3.4)):

0<g <2fiy; or 2fi Vi=1..-N-1 (3.10)
Using (3.9) and the mass conservation, we have the estimate for thegerms
Ipil = Cg In(K), (3.11)

whereC is a generic constant throughout the rest of the proof, depending on the numb
grid pointsN, domain sizes, the gride;, and the initial datafio)ie. . Indeed, we have the
following upper bounds:

IDijl <2 sup |D(n f)i| <2In(K), i=1---N-1,
i=1.-N—1
N-1 N-1 N-1 N-1
gikijAg <> gie) Mg <2 giejiac) <4 fiiaejCia < 4pE.
=1 =1 =1 =1

Note that the inequality

3/2

&j A&‘j < 28]+1CJ‘, (3.12)

has been used which is equivalent to

3% (6j41 — & 3/2(1 —
: (3/12+1 3/J2) =<3 sup X 3/2X) =2
ealefia—g ) xeboar 1=X
Then, using (3.10), we have
’% < CIn(K) f;. (3.13)
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Thus, we have forany=1---N -1

o(fi/fiv) 1 fi fi 0fiy1

at fisa ot 2, ot
Finally, using (3.13), we have
K
’aa_t < CKlIn(K), (3.14)
which impliesK (t) < K (0) exp(exp(Ct)) and this ends the proof. [

Remark3.2. Taking an arithmetic mean fgr terms, thatig; = (f; + fi11)/2 (like in
the work of Bereziret al.; see [2]) leads to the functiok (see [4]) for an estimate of the
form

< CKZ2In(K). (3.15)

K
at
Since this differential equation has no global solution in time, it cannot be proved that

semi-discretization described in [2] has a global positive solution.

Remark3.3. An alternative proof can be given following the ideas presented in n
section (see Proposition 4.1). Indeed, we show that the discrete collision term can al
be written as

FP?:Gi-FKi fi,

whereG; is positive (gain term) an&; is bounded by some constabt So that for alli
we have

df;

— > —Cf;.

dt =
Such inequality implies that the weighfscannot vanish in finite time.

4. THE TIME-DISCRETIZED FPLE

In this section, the bars denote the various quantities (fikeat timet, ; =ty + At
defined recursively. Let us introduce the following time explicit scheme

f, = f + AtFP, 4.1)

where FP is defined by (3.7), of the forng; — pi_1/ci fori=2,..., N —1, andp; can
be written in the form

p=g((D(Inf)iA—-B) Vi=1.--N-1,

with

P4

-1 N-1
A = gjki,jAé‘j and B = Zng(In f)jki’jASj. 4.2)
. et

1
1N
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4.1. Cost and Implementation of the Algorithm
The particular form of the discrete functian;,
3/2 . .
SiJ/rl/z vi< |,
kij = (312

€12 Vi =1,

permits us to evaluate all thd terms A; and B; in O(N) operations. Indeed, we have,
using the definition ok; ;,

A = 8|+1/2 Z gjAgj + Z gje 1+1/2A‘91 (4.3)
N-1>j>i 1<j=i
and
Bi=cl3, . 0iDINf)As + > g;Ddn f)ed? ,Ae. (4.4)
N—1>j>i 1<j<i

Obviously, A; and B; can be evaluated using three loops. The detailed algorithm for 1
computation of all the termp; reads :

ALGORITHM 4.1.

al_gl*eiil/z*Ael,
y1:=01xD(n f)l*slil/Z * Agq;
fori:=2toN—1do

o ‘=aj—1+ G *Sﬁii/z*A&,

Y :=%-1+ G xD(In f), *8|+1/2*A8|
end for

BN-1'=0ON-1% AeN_1;
Sn—1:=0On-1xD(n f)n_1x Aen_1;
fori:=N-2toldo

Bi '=Bit1+ 0 * Agj;

8 :=238i41+ G xD(In f); x Ag;;
end for

fori:=1toN —1do
A =gk B+ o
B : 3/2 .
= e %0 N
pi =0 *((DIn )i « A + Bp);
end for

4.2. Time Step Restriction for Positivity and Entropy Decay

The main questions about the time explicit scheme (4.1) concern positivity and enti
decay property. By positivity of the scheme, we mean that the te‘fn&re positive if
the termsf; are positive and by entropy decay, the propdﬂtyfT) < H(fj), where the
discretized entrop¥ is defined by (3.8).

We obtain a time step limitation in order that the scheme remains positive and the ent
decays. The last question is related to the series of time steps; its divergence provi
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positive and entropy decaying time-discretized solution for any arbitrary large time. We |
form the analysis for two natural grids which are used for the numerical examples prese
later.

The first one is aniform grid in velocity , where the nodes of the grid are defined by th
sequence; = (i — 1)2Av? with Av=,/g9/(N — 1), N being the number of grid points.
For this choice, the geometric quantities used in the definition of the scheme are

o Agi =(Av)2(2i —1).
e ¢ =(3( — 1%+ 1)Av3/3 except foii = N, wherecy = (3N? — 9N + 7)Av3/3.
® &i112= (ZI2 -2 + 1)A1)2/2.

The second type is aniform grid in energy, i.e.s; =( — 1)Ae with Ae =¢o/(N — 1)
and the geometric quantities used reads now:

o Agj=Ae.

e G =(i%?—(i —2)%?)Ae%?/3 exceptfoi =1 andfori = N for whichc; = As¥? and
cn = ((N=1)%2—(N—-2)%2) As%? respectively. Itis easy to check that we have the follow
ing lower bound foi; which will be usefull laterg; > Ae¥?((i — 1)+ /i( — 1))/(3V'N)
fori=2..-N—1,andfori =N, cy > Ae¥?(N — 3/24+ /(N = D)(N = 2))/(3V'N).

® Eiy12= (2I - 1)A8/2

For these two grids, we obtain sufficient conditions for the time step in order to ens
positivity and entropy decay. We summarize this result as

PropPosITION4.1. For each grid considered aboyé¢here exists a constant C which
depends only on the denspythe entropy Hand the lengtlzq, such that the schenid.1)
is positive and entropy decaying under a time step restriction of the forrm C Av? for
theuniform grid in velocity or At < CAe? for theuniform grid in energy .

Proof. Let us first exhibit a sufficient condition on the time step to guarantee entrc
decay. Suppose that there exists a time atesuch that for allAt € [0, At9[ all the terms
f; are positive. Then, using the definition (3.8), the entropy associated with the sch
4.1)is

N N
H=H(A = ¢ fjIn(f) =Y cj(fj + AtFP) In(f; + AtFP).  (4.5)
j=1 j=1

Then, we have, using the inequalityI+ x) < x ¥Xx > —1 and the conservation of the
mass,

def

N N
H(AY < H(O) + At aFPPIn() + At2 S o (FP)?/fi € F(at)

i=1 i=1

for all At €[0, At°[. Thus, a sufficient condition for the entropy decay is to chabssuch
thatH (At) < H(0) = H(0), or equivalently,

< _ZiN=1 Ci FP}5 In( fi)

At .
- ZiN=10i (Fpis)z/fi
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By construction, we have

NlNl

—ZC,FPSH”I(I‘)— ZzglgjkuASlAE] i > 0.

i=1 j=1

On the other hand, we have

IA

cyfa fnNCN-1

N ) p2 p2 N-1 1
- ; : M N-1 T (p —n )2
;Q (FRS) /fl + + Iz:; Gt (pi Pi-1)

p2 pz N-1 5
M N—1 2 )
=ah’ +> (PP + pPy).
G Inena ;ég G fi (P7+ Ply)

Using the definition of the termp;, we have
N-1 2 N-1 N-1
= <Zgigjki,jA8j Di,j) < (Zgigjki,jA8j> (Zgigjki,jAEj ij>,
i=1 i=1 i=1
and using thag; < 2f;, we obtain

N-1

p2 2 2
= (Zorsn) (Soomsananct

IA

i=1 i=1

N-1 N-1
< sup( Zk,@,Ae,)(Zgigjki,,-AsjAeinj).

i=1 i=1

The same estimate can be obtainedgor / fi ¢, since the sequencks; is increasing. By
summing these inequalities, one obtains

N 16 N-1 N
Zc. (FF) /f < sup <CA Zk' ,gJAe,> (—ZciFPfln(fi))
i=1 i A8 j=1

i=1

Finally, the time step has to satisfy

At. sup( Zk, Jg,Ag,> <1 (4.6)

Equation (4.6) gives the time step limitation used for the numerical examples. We must
find an upper bound of the denominator of (4.6). We detail the majoration for the unifc
grid in velocity, since for the uniform grid in energy it follows the same lines. The problern
to estimate the above terms independently of i. For the uniform grid in the velocity varia
using the expressions afe; andc; and smceaf‘il/z > ki,;, we have for the denominator of

(4.6)

N-1 N—1
= (ka‘QJASj) < 8?_{_21/2<2ng81'>. 4.7)
=1 =1
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Using the definitions of;, Ae;, ande;1/2, one also has

e _ 3 @2-20+1% \ 1
GAsi 22\ B — 12+ 1)@ —1) ) Av?
Since the term depending ois bounded, we have a time step of the form

N-1
At <C ( > g Ae,-> (Av)2,

=1

whereC is a constant independent of the data. Let us now bound theE?:ﬁf 0j Asj.
By the Cauchy—Schwarz inequality, we have

P4

Il
[N

j j=1

-1 N-1 N—-1
gjAgj < ngcj Z (Ae?/cj). (4.8)
=1

By replacingAe; andc; by their values, itis easy to checkth?@:J 1 (Asz/cJ )isbounded
by a constant which depends only on the length of the dontai®n the other hand, one
defines the discrete, norm

1 N-1 N def
5\ 207 = | > fre Ehfll
j=1 j=1

Finally, the scheme is entropy decaying under a condition for the time step of the form

At < C(eo, || fll2) AvZ.

For the uniform grid in energy, as indicated above, the majoration can be carried out u
the same techniques. This gives the inequalities

N-1 N-1
A = (Zki’jng8j> =< 8i+1/2<28i1421/2gj ASJ'), (4.9)

=1 j=1

instead of (4.7). It is also necessary to use the lower bourgl. dkle obtain the same kind
of time step restriction for entropy decaying as for the uniform grid in velocity, but wi
As&? instead ofAv?.

Let us now exhibit a sufficient condition on the time step to guarantee the positivity
the scheme (4.1). Using the notation defined above, we can write the tefras BRBum of
a positive termG; and a pseudo-loss term (which is not necessarily negative) of the fo
Ki fi, with bounded coefficient. Indeed, FPreads

A G i+1 A_10 -1 fi_1
———In{— ) —aB -g1B_
Gi (ASI n( fi >+ Agj_1 n( fi ) g5 —gi1bi 1),

whereA; and B; are defined by (4.3) and (4.2), respectively. First, it is easy to check tl
all the termsB; are bounded; then, using (3.1®,g; /( fici) are bounded and are taking
into account inK;. The same result holds f@; _10; _1/(fi_1Gi_1).
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Consider now the term containingy. If fi .1 > f;, this term is positive, then it is taken
into account in the gain terr®;. On the contrary, sincéy >0 andg; > 0, this term is
negative and in such case, we have

fii1
\g' '”(T)

1 fii1 2A
—Ag In[ —/ .
G fi Agj |g|'1( fi )’ = Ci Agj

This term taken into account i; . It is straightforward to show the same result for

1 fi_a
i L | — ).
CiASi—1A| 10 1n< fi )

<2 sup|xIn(x)| f; =271 < 2f;,

1>x>0

Therefore, we have
FF? =G+ Kif

with G; > 0 andK; bounded. Thenf_iz fi + FP} is positive provided that

-1
At < (m.ax|Ki|) ,
|

and it is easy to check that

max| K| < 2( max|
I |

l+metel)
+max— .
G

i AEj

Then, under the condition

1 A B |\ *
At < E(miaxl Y ‘ + miax‘E ) , (4.10)

the scheme is positive. Let us now detail for the uniform grid Buch a time restriction.
Recall the inequality obtained from (4.7)

< C(eo, I fll2)/(AV)2. (4.11)

Ci A¢gj
For the termgB; /c;i| we use

B

N-1 N-1
&ij 2 C
';1/ Zs}fl/zg”(Dlnf),-me,-gA—vZe}fl/zg,—|(Dlnf),-|Ae,-. (4.12)
=1 j=1

Using (3.10) and the fact that the sequeneg is increasing, we have

N-—-1 UZ
1/2
Zs 229D £)j|Ag < Z 12 4 (I £ ] 4 [In 1] A
j=1 j=1 Ag
N—-1 1/2

< 42 itz ¢ jln fj]Ag; + 2 fnlInCFn)lex 2y
£

Cc O
< B;mln filAg.
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Then, using the Cauchy—Schwarz inequality as for (4.8), we obtain

N-1

N-1 N-1 A2
S Agifyiin £);1 = JZ £21In fj|2c,¢ >t =Claltin(hla). (413
j=1 j=1

j=
Collecting all the results, we show that, in the case of an uniform grid there exists a
constantC such that for any time step satisfying

At < C(eo, | f IN(F) |12, || f l2) Av? (4.14)

the scheme is positive For the case of an uniform grid ime do not detail the calculations.
One uses an estimate of the form (4.7) instead of (4.11) to obtain an upper boun
A /(ci Agj). For B /(ci), one proceeds exactly as for the uniform grid in velocity. Finally
we obtain (4.14) withAs? instead ofAv?.

For each type of grid, by takinG = min(C4, C), we obtain the desired result. [

Remark4.2. On the numerical examples, m@ak) (and consequently the, norm
| f]l2) appears to be bounded not only uniformly in time (for a fixéy which can be
proved using the mass conservation, but also independently of the mesh size. This rer
to be proved in order to approach the problem of the convergence.

Remark4.3. As we will see in the next section on a numerical example, preserving
positivity only, by taking a time step of the formt = o At°, whereAtC is the maximum
allowable time step satisfying

fi + At°FPP >0 Vi el

with the CFL factore equal to 0.5, for example, does not permit to avoid oscillation
However, (4.6) and (4.10) yield to a nonoscillatory scheme even if there is no maxim
principle for the nonlinear FPLE.

5. NUMERICAL TEST FOR THE FPLE

The numerical test presented now is extracted from the work of Roserdilath[19]
and has been used by Larroafteal. [12] and Frenod and Lucquin [11] to test numerica
methods for the Fokker—Planck—Landau equation. The initial data is given by

%) = 0.01 exg—10[(v/z — 0.3)/0.3]%). (5.1)

We will show the entropy, the Linnick functionnal and the distribution function at tirr
t€{9, 36,81, 144, 225 324, 441, 576, 729, 900}. The Linnick functionnal is defined by

2
L(t) = / V. 1) dv (5.2)
veR® f

and for an isotropic function this reduces to

2 .3/2
L(t):/ (2—f> £ de. (5.3)
£>0 & f
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FIG. 1. Distribution function for the uniform grid in velocity.

The Linnick functionnal is known to be decreasing in time for the Boltzmann equation :
the linear Fokker—Planck equation [3, 20, 9, 10]. Since the nonlinear FPLE is the so-c:
grazing collisions limit of the Boltzmann equation, one can expect that it is also decrea
for FPLE. For initial data (5.1) the Linnick functionnal is actually time-decreasing. Mor
over, this functionnal illustrates very well the instabilities due to a nonentropy decay
scheme.

The tests run with two types of meshes, a uniform grid in the modulus of the velo
v = /¢ and the other in the energy variabl@lready described in the preceeding sectior
For the two type of grids we take either 200 or 800 points of discretizatiornegadl.
The computations were carried out with a global time step equal to 1 and using subcy:
inside each time step in order to preserve the positivity of the solution and to respec
entropy condition (4.6) with a CFL factor equal to 4.

The tests have been performed on a personnal Apple computer, with a 160 Mhz PP(
chip. The cost of evaluating the solution during a time step for the uniform grid in ene
(resp. in velocity) is about 0.09 s (resp. 0.05 s) for 200 cells and 7.46 s (resp. 3.71 s
800 cells; 900 time steps are performed. Note that the increase of the computationnal
is in good agreement with the theoretical estimate, since it is around a cubic function o
numberN of points (At < C/N? and linear cosO(N) of the algorithm).

Figures 1 and 2 show the time relaxation of the distribution function at various tim
initial condition, timet € {9, 36, 81, 144, 225 900}, and the equilibrium state. Figures 3
and 4 show for this thermalization experiment the time relaxation otHhend Linnick

800 points 200 points
0,016 e N : 0,016 L
0,012 0,012 \
0,004 0,004 / \
0 : L 0 E A n 1
0 0,2 0,4 0,6 0,8 1 0 0,2 0,4 0,6 0.8 1

velocity velocity

FIG. 2. Distribution function for the uniform grid in energy.



242 BUET AND CORDIER

H functionnal
-0,0205 —————F————— 17—

800 uniform cells in velocity
| + 200 uniform cells in velocity
-0,021 x 800 uniform cells in energy
O 200 uniform cells in energy

-0,0215 |

20,022 |-

00225 Lo 1 1 1
0 200 400 600 800

time

FIG. 3. Entropy.

functionnals. One can observe for these quantities that the results are very close to
other.

We also run a simulation using 200 cells uniformly distributed in energy and by ol
imposing the positivity of the solution using at each iteration half of the maximal allowal
time step that guarantees the positivity. The run is only three times faster than the ones
with a CFL equal to 4 for the entropy condition 4.6.

Figures 5, 6, and 7 show the relaxation of the H and Linnick functionnals and the ¢
tribution function att =81. For the entropy, Fig. 5 compares the result with the entro
obtained for the same grid and the entropy-decaying scheme. The noisy curve corresj
to the “nonentropy-decaying” computation. For the first time steps, the two curves are:
close. For large time, it is clear that the “nonentropy-decaying” computation has some
ficulties reaching the equilibrium state, but the result does not seem too bad. On the F
we plot the distribution function obtained with the two schemets=a81. The results are
gualitatively the same for other times except for the small ones. The domain of oscillat

Linnick functionnal

0,02 ——— T
- 800 uniform cells in velocity H
- + 200 uniform cells in velocity [
x 800 uniform cells in energy [
0,015 o 200 uniform cells in energy
0,01 .
i 5B &S E S 65 & 5 &
0,005 L——— E— E— o :
0 200 400 600 800

time

FIG. 4. Linnick functionnal.
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FIG.5. Entropy: Comparison between entropy and nonentropy computations.

Linnick functionnal
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FIG. 6. Nonentropy computation: Linnick functionnal.

f(v,t) at t=81
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FIG. 7. Comparison between entropy and nonentropy computation for the distribution functierBat



244 BUET AND CORDIER

is independent of time and of the number of grid points. At large time, these oscillati
persist but are damped. The main difference can be seen on the Linnick functional for w
the results appear totally randomized, with no relationship to the "exact” (entropy decay
one) behaviour. Note that the same type of computation with a uniform grid in velocity
duces a totally different behaviour. The distribution function is uniquely noisy nesd
which explains, by recalling that the measure of integratiogfdésle, that functionnals of
the distribution function have a correct time relaxation.

6. CONCLUSIONS

We provide for the simplest case of the isotropic, homogeneous, and Coulomb Fok
Planck—-Landau equation, a complete analysis of a conservative and entropy dec:
numerical scheme. This scheme is very close to the scheme proposed in [2] sinc
modification consists in taking the harmonic average, instead of the arithmetic one fol
evaluation ofg;. The main advantage of this scheme is to provide rigorously for the fi
time the existence of solutions for the semi-discretized model and time step restrictior
ensure positivity and entropy decaying of the scheme. We show that relaxing these
step conditions provides suspicious numerical results of FPLE for any time (see plot
Linnick functional).

We refer to [4] for similar analysis for the linear and nonlinear FPLE given by (2.1).
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